Succinate metabolism: a new therapeutic target for myocardial reperfusion injury.
نویسندگان
چکیده
Myocardial ischaemia/reperfusion (IR) injury is a major cause of death worldwide and remains a disease for which current clinical therapies are strikingly deficient. While the production of mitochondrial reactive oxygen species (ROS) is a critical driver of tissue damage upon reperfusion, the precise mechanisms underlying ROS production have remained elusive. More recently, it has been demonstrated that a specific metabolic mechanism occurs during ischaemia that underlies elevated ROS at reperfusion, suggesting a unifying model as to why so many different compounds have been found to be cardioprotective against IR injury. This review will discuss the role of the citric acid cycle intermediate succinate in IR pathology focusing on the mechanism by which this metabolite accumulates during ischaemia and how it can drive ROS production at Complex I via reverse electron transport. We will then examine the potential for manipulating succinate accumulation and metabolism during IR injury in order to protect the heart against IR damage and discuss targets for novel therapeutics designed to reduce reperfusion injury in patients.
منابع مشابه
Myocardial ischemia-reperfusion injury: a neglected therapeutic target.
Acute myocardial infarction (MI) is a major cause of death and disability worldwide. In patients with MI, the treatment of choice for reducing acute myocardial ischemic injury and limiting MI size is timely and effective myocardial reperfusion using either thombolytic therapy or primary percutaneous coronary intervention (PPCI). However, the process of reperfusion can itself induce cardiomyocyt...
متن کاملExploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats
Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...
متن کاملUnderstanding and preventing mitochondrial oxidative damage
Mitochondrial oxidative damage has long been known to contribute to damage in conditions such as ischaemia-reperfusion (IR) injury in heart attack. Over the past years, we have developed a series of mitochondria-targeted compounds designed to ameliorate or determine how this damage occurs. I will outline some of this work, from MitoQ to the mitochondria-targeted S-nitrosating agent, called Mito...
متن کاملTherapeutic effects of 1,25-dihydroxyvitamin D and losartan co-administration on myocardial ischemia-reperfusion injury in rats
Introduction: Studies support the idea that low levels of vitamin D are associated with a higher risk of heart disease. Losartan has also been prescribed as a drug commonly used for treating hypertension. The aim of the current study was to investigate the effects of 1,25-dihydroxyvitamin D in combination with a non-hypotensive dose of losartan on myocardial infarct size, reperfusion-induced...
متن کاملPlin5 alleviates myocardial ischaemia/reperfusion injury by reducing oxidative stress through inhibiting the lipolysis of lipid droplets
Myocardial ischaemia-reperfusion (I/R) injury is a complex pathophysiological process. Current research has suggested that energy metabolism disorders, of which the abnormal consumption of fatty acids is closely related, compose the main pathological basis for myocardial I/R injury. Lipid droplets (LD) are critical regulators of lipid metabolism by LD-associated proteins. Among the lipid drople...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cardiovascular research
دوره 111 2 شماره
صفحات -
تاریخ انتشار 2016